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Introduction

Cervical cancer remains one of the most significant 
global health concerns among women, especially in 
developing regions (1). Cervical cancer accounts for 
approximately 6.5% of all malignancies in women. Despite 
advances in screening and vaccination programs, the high 
incidence and mortality rates highlight the urgent need 
for improved strategies in prevention and early detection 
(2,3). Infection with human papillomavirus (HPV), primarily 
transmitted through sexual contact, is the leading cause of 
cervical cancer, and vaccination against HPV has become 

an essential preventive measure supported by global 
health authorities (4-6).

Early detection is critical to reducing mortality, yet 
asymptomatic progression in the early stages makes 
timely diagnosis (Dx) challenging (7). Traditional screening 
methods such as Pap smears and HPV tests, while 
effective, may be limited in sensitivity, accessibility, or cost 
in certain healthcare settings. For example, Pap smears 
may yield false-negative results in up to 50% of cases, 
leading to delayed diagnosis (8). In addition, in many low- 
and middle-income countries, limited access to trained 
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personnel and laboratory infrastructure further reduces the 
effectiveness of routine screening programs (9). Advances 
in artificial intelligence and machine learning (ML) offer 
opportunities to improve prediction and stratification of 
high-risk individuals (10). 

We hypothesized that the integration of socio-
demographic, behavioral, and medical data into ML 
based models would enhance the accuracy of cervical 
cancer risk prediction compared to traditional screening 
methods alone. Therefore, the aim of this study was to 
evaluate multiple ML algorithms on the University of 
California, Irvine (UCI) cervical cancer risk factors dataset 
(11), addressing class imbalance through the use of the 
synthetic minority over-sampling technique (SMOTE) (12). 
This approach is expected to contribute to clinical practice 
by supporting earlier identification of high-risk patients, 
thereby enabling timely interventions and ultimately 
reducing cervical cancer-related morbidity and mortality.

Materials and Methods 

Dataset Description

Ethics committee approval was not required for this 
study, as the data used does not contain personally 
identifiable information. Therefore, ethics committee 
approval was not obtained. The dataset used in this study 
was obtained from a publicly available cervical cancer 
screening database, containing clinical and behavioral 
attributes of female patients. The dataset, sourced from 
the UCI ML repository, includes 858 instances with 32 
attributes capturing demographic, sexual, and clinical risk 
factors.

•	Age
•	Number of sexual partners
•	First sexual intercourse age
•	Number of pregnancies
•	Smoking status and history
•	Smokes (packs/year)
•	Sexually transmitted diseases (STDs) and HPV  

	 infection status
•	Diagnostic test results (Hinselmann, Schiller, cytology,  

	 biopsy)

The target variable was a binary classification indicating 
the presence or absence of cervical cancer or precancerous 
conditions such as cervical intraepithelial neoplasia (CIN) 
and HPV-positive status. Missing values were handled 
by imputing missing values. Categorical variables were 
encoded using one-hot encoding (13).

A snapshot of the dataset used in this study is presented 
in Figure 1.

Handling Imbalanced Data

Given the rarity of positive biopsy cases in the dataset, 
the class distribution was heavily skewed. We applied 
SMOTE to synthetically balance the classes and ensure 
fair model evaluation. synthetic minority over-sampling 
technique works by generating synthetic samples of the 
minority class rather than simply duplicating existing 
instances. It achieves this by selecting a minority class 
sample and interpolating it with one of its k-nearest 
neighbors in the feature space (14). This process introduces 
new, plausible samples and helps the model learn a more 
generalized decision boundary, thereby reducing the bias 
toward the majority class and improving the classifier’s 
ability to detect minority class instances. synthetic minority 
over-sampling technique is particularly beneficial when 
used prior to training classification models, as it provides 
a balanced dataset without introducing exact duplicates, 
which could otherwise lead to overfitting (15).

Exploratory Data Analysis

Exploratory data analysis (EDA) was conducted 
using Python’s data visualization libraries seaborn and 
matplotlib to visualize the distributions of patient groups 
or characteristics, including those pertaining to patients 
(16). Histograms were generated to assess the normality 
of the distribution of variables in the dataset. In this study, 
we conducted an EDA to investigate the relationships 
between cervical cancer Dx and HPV status using a 
heatmap visualization. This approach allows us to visualize 
the interactions and correlations between these critical 
variables.

Figure 1. A snapshot of the dataset for this study, filtered data with first 5 rows
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Machine Learning Model Training and Evaluation

For predictive modeling, the dataset was split into 
training and testing subsets using an 80/20 split ratio. 
The LazyPredict library was employed to facilitate the 
comparison of multiple regression models, including multi-
layer  perceptron regressor, extreme gradient boosting 
(XGBoost), elastic net with cross-validation, and Lasso, 
using Python and scikit-learn (17).

Software and Tools

All analyses were conducted using Python 3.10 within 
a Jupyter Notebook environment. The primary libraries 
utilized were pandas and NumPy for data manipulation, 
as well as matplotlib (18) and seaborn for visualization. For 
model development and evaluation, scikit-learn, XGBoost, 
and Light Gradient Boosting Machine (LightGBM) were 
employed, providing robust tools for building and 
assessing ML models (19). 

Statistical Analysis 

Model performance metrics were calculated to 
comprehensively assess the predictive ability and 
efficiency of each algorithm. Each model was evaluated 
in terms of accuracy, which reflects the overall correctness 
of predictions; sensitivity (recall), which measures the 
ability to correctly identify positive cases; specificity, which 
quantifies the correct identification of negative cases; 
precision, which reflects the proportion of true positives 
among predicted positives; F1-score, which balances 
precision and recall; and receiver operating characteristic 
(ROC) area under curve (AUC), which provides a global 
measure of model discrimination capability (20). In 
addition, the computational efficiency of each model 
was assessed by recording the time taken (in seconds) to 
complete both training and prediction phases. This was 
particularly important in evaluating the scalability of the 
models for real-world applications where rapid decision-
making may be required.

Results

Exploratory Data Analysis

A correlation heatmap (Figure 2) illustrated both weak 
and strong relationships among variables, emphasizing 
the multifactorial nature of cervical cancer risk.

•	Smokes, smokes (years), and smokes (packs/year)  
	 show strong correlations (r≈0.69-0.72), indicating  
	 internal consistency across these smoking-related  
	 measures.

•	Diagnostic variables (Dx: Cancer, Dx: HPV, Dx: CIN, and  
	 overall Dx) are also strongly correlated (r>0.68),  
	 reflecting overlapping diagnostic criteria or  
	 comorbidity.

•	Visual inspection outcomes (Hinselmann, Schiller,  
	 cytology) are moderately to strongly correlated with  
	 biopsy, with Schiller showing the strongest correlation  
	 (r=0.74), suggesting predictive value for biopsy- 
	 confirmed cases.

•	Age correlates moderately with number of  
	 pregnancies (r=0.56) and first sexual intercourse  
	 (r=0.37), consistent with expected life course  
	 patterns. Several variables, including STDs, number  
	 of diagnoses, and number of sexual partners, display  
	 very weak correlations with most other variables 
	 (r<0.1), implying limited linear association in this  
	 sample.

The distribution indicates that HPV diagnosis (Dx: 
HPV) is the most frequently observed condition, slightly 
surpassing cancer diagnoses (Dx: Cancer), while CIN (Dx: 
CIN) is relatively less common (Figure 3). 

A significant class imbalance is evident. The number of 
healthy individuals greatly outnumbers diseased individuals, 
indicating a highly skewed dataset. This imbalance in 
class frequencies may necessitate data augmentation 
techniques to mitigate class bias and enhance model 
learning. After applying SMOTE, a balancing technique, 
the classes are now evenly distributed, with almost equal 
numbers of healthy and diseased individuals (Figure 4). 

Machine Learning on SMOTE Balanced Data

Table 1 below shows the performance of various 
classification models used to predict cervical cancer based 
on raw data. The highest accuracy and ROC-AUC scores 
(97%) were achieved by both the RandomForestClassifier 
and LGBMClassifier. RandomForestClassifier delivered 
this high performance with a training time of just 
0.74 seconds, while LGBMClassifier achieved similar 
results even faster (0.33 seconds), making both models 
efficient and effective. Other strong performers include 
XGBClassifier, DecisionTreeClassifier, BaggingClassifier, 
and ExtraTreesClassifier, each achieving 96% accuracy and 
ROC-AUC, with DecisionTreeClassifier standing out for its 
extremely low training time (0.02 seconds).

Model Performance of Categorized Data

The ML model demonstrated strong classification 
performance in predicting cervical health outcomes across 
four categories: Healthy, Cancer, CIN, and HPV infection. 
The overall accuracy achieved was 93%, with particularly 
high precision in detecting cancer (1.00) and high recall 
for HPV (0.93). However, the recall for the cancer class 
was slightly lower (0.80), suggesting an increase in false 
negatives, while CIN prediction maintained balanced 
precision and recall (Table 2).

A precision of 1.00 for the cancer class indicates no 
false positives. While this is desirable, the recall is only 
0.80, implying that 20% of true cancer cases were missing.
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In clinical diagnostics, false negatives for cancer can have 
severe implications, leading to delayed Dx and treatment. 
For HPV, the recall of 0.93 is excellent; however, a precision 
of 0.78 means there’s a relatively higher false positive rate. 

Discussion

This study provides a detailed evaluation of ML 
approaches for predicting cervical cancer risk based on 
clinical and lifestyle data. Our analysis revealed strong 
internal consistency among smoking-related variables, 
confirming their collective importance as predictive 
features. This finding emphasizes that integrating multiple 
related behavioral factors can enhance the discriminatory 
power of ML models, supporting targeted risk assessment 
strategies.

Interestingly, reproductive variables such as high 
parity and early age at first sexual intercourse did not 
show a direct association with cervical cancer in our 
dataset, despite being reported as risk factors in previous 
epidemiological studies (21,22). There are several 
possible explanations for the lack of observed association 
between reproductive factors and cervical cancer risk in 
our analysis. First, the relationship may not be detectable 
in smaller or demographically homogeneous samples. 
Second, unmeasured confounders such as HPV infection, 
socio-economic status, smoking habits, contraceptive 
use, or access to cervical cancer screening may influence 
or obscure the true relationship between reproductive 
behaviors and cancer risk. Lastly, issues related to data 
quality, such as self-reported information, missing values, 

Figure 2. Multivariate correlation structure of risk factors associated with cervical cancer diagnosis

Dx: Diagnosis, CIN: Cervical intraepithelial neoplasia, HPV: Human papillomavirus, STDs: Sexually transmitted diseases
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or inaccuracies in key variables like age at first intercourse, 
could contribute to the attenuation of expected 
associations. This discrepancy suggests that contextual 
variables such as HPV status, socio-economic conditions, 
screening access, and smoking habits may modulate the 
impact of reproductive behaviors. It also highlights the 
importance of considering dataset-specific characteristics 
and potential confounders when applying ML models to 
real-world clinical data.

The evaluation of different ML classifiers demonstrated 
that ensemble methods, particularly RandomForestClassifier 
and LightGBMClassifier, outperformed simpler probabilistic 
models. The superior accuracy and ROC-AUC of these 
methods indicate that capturing complex, non-linear 

relationships between clinical features is crucial for reliable 
prediction. While the high precision for cancer detection 
minimizes false positives, the relatively lower recall 
underscores the need for caution in clinical interpretation, 
as some true cases may still be missed. In contrast, models 
such as DecisionTreeClassifier and ExtraTreeClassifier 
provide a balance between performance and 
computational efficiency, suggesting potential utility for 
rapid or mobile-based screening tools. These results are 
in line with existing literature that highlights the efficacy 
of ML in improving early detection of cervical cancer and 
HPV-related abnormalities (23).

Furthermore, the application of SMOTE to address 
class imbalance proved essential for ensuring adequate 
representation of minority cases. Our findings reinforce 
that data preprocessing techniques directly impact model 
reliability and generalizability, particularly in medical 
datasets, where diseased cases are often underrepresented 
(24). This supports the broader integration of ML pipelines 
into digital health solutions, potentially improving early 
detection in resource-limited settings and complementing 
existing clinical workflows.

The high precision in the cancer class (1.00) indicates 
that the model effectively minimizes false positives, 
which is crucial in avoiding unnecessary psychological 
and medical interventions. Conversely, the lower recall 
for cancer (0.80) implies a potential risk of missed cancer 
diagnoses, which is critical in a clinical setting. The model’s 
strong performance in HPV prediction is also consistent 
with research indicating that behavioral and screening 
features are highly predictive of HPV status. According to 
Schiffman et al. (25), the integration of HPV typing into 

Figure 3. Distribution of diagnoses: Cancer, CIN and HPV among 
diseased individuals

Dx: Diagnosis, CIN: Cervical intraepithelial neoplasia, HPV: Human 
papillomavirus

Figure 4. Distribution of Healthy vs. Diseased individuals in the dataset before SMOTE (left) after SMOTE(right)

SMOTE: Synthetic minority over-sampling technique
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screening strategies significantly enhances early detection 
of precancerous changes.

Finally, the balance between CIN classification metrics 
(precision: 0.88, recall: 0.84) indicates that the model can 
reasonably detect intermediate lesion stages, which are 
crucial for preventive interventions before progression to 
invasive cancer.

Overall, the study highlights that a careful combination 
of data preprocessing, feature selection, and ensemble 
learning can produce predictive models with both 
high accuracy and practical applicability. These results 
contribute to ongoing efforts to optimize automated 
screening tools and provide clinicians with evidence-
based decision support in cervical cancer prevention and 
management.

Study Limitations 

The potentially limited and non-diverse sample size 
may affect the generalizability of the findings. Data quality 
issues, such as missing information, could introduce bias, 
and additionally, important risk factors may have been 
overlooked in feature selection. Additionally, the complexity 
of the models may hinder interpretability, and the lack of 

external validation on independent datasets limits the 
applicability of the results in real-world settings. Despite 
these limitations, our findings indicate the integration of 
ML into clinical diagnostics to enhance early detection and 
treatment of cervical cancer, while recognizing the need 
for further research to address these limitations.

Conclusion
The study highlights the multifactorial nature of 

cervical cancer risk, revealing significant correlations 
among variables through a heatmap analysis. While 
addressing class imbalance with SMOTE improved model 
performance, particularly with ensemble classifiers like 
random forest and LightGBM, the lower recall for cancer 
detection emphasizes the need for further investigation to 
avoid missing true cases.
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